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 Abstract— In the Philippines, iceberg lettuce (Lactuca sativa 

var. capitata) remains a high-value crop but its postharvest 

handling remains inefficient, relying heavily on manual grading 

and sorting. This study developed a vision-based quality grading 

and sorting system to streamline postharvest processes. The 

system utilized MATLAB for control logic and computer vision 

integration, enabling precise automation into three sorting bins 

corresponding to the grade of the iceberg lettuce. Computer-

aided design and dimensioning were carried out using Fusion 

360, ensuring the conveyor system design met operational and 

spatial constraints specific to the lettuce postharvest handling 

requirements. The automated sorting conveyor which handles 

five (5) lettuce heads per batch, demonstrated 100% precision 

at 70% speed and 92% at full operational speed. System time 

studies recorded an average cycle time of 7.5 seconds per lettuce 

and a throughput time of 8 lettuces per minute, confirming the 

system's efficiency and suitability for postharvest operations. 

Keywords—iceberg lettuce, quality grading, vision-based 

sorting, precision agriculture, postharvest automation 

I. INTRODUCTION 

In the Philippines, Lettuce (Lactuca Sativa) is a crop of 
high value, which mainly grows in the colder regions of Luzon 
like, Benguet and Mountain Provinces [1]. Open-field 
technologies are prevalent in the country where lettuce 
varieties of higher caliber are unable to be sold on spot 
markets due to high investment costs to maintain cultivation 
and low marketing channels [2]. This inability to differentiate 
high quality produce from iceberg lettuces results to 20-30% 
losses due to improper sorting and trimming [3]. One key area 
for improvement in postharvest lettuce handling is the grading 
and sorting process, which ensures produce is marketed based 
on size, color, and freshness [4]. These tasks are still 
performed manually by farmers, leading to inconsistent 
quality and reduced market competitiveness [5]. Improving 
this process through automation will support Filipino lettuce 
growers in meeting market demands [6] [7].  

Current research trends on sorting and grading within the 
agri-food sector emphasize its sensing, smart and sustainable 
(S3) domains [8]. Literature has emphasized the use of 
computer vision techniques to address vegetable quality based 
on color, size, and internal quality parameters as its sensing 
domain [9]-[12] Most common sensing devices for computer 
vision relies on extraction of color spaces from a charge-
coupled device (CCD) cameras placed on an artificially 
illuminated chamber that will then provide quality parameters 
based on physiochemical properties of the crop [13]. Studies 
have also employed an evaluation or grading criteria as basis 
for their grading and sorting methods [14]. Recent 
developments in lettuce quality classification have been 
focused on lettuce freshness based on chlorophyll-a 
concentrations, moisture content, and fresh head weight [15]-

[17]. The use of microcontrollers with the inferencing done on 
a computer has been the primary setup for the smart domain 
of the agri-sorting system, where open-source hardware like 
that of Arduino and the use of programmable logic controllers 
are used to execute sorting with minimal human oversight. 
[18]-[21]. Lastly, sustainable domains aim to reduce costs 
while ensuring robust and repeatable sorting throughout their 
use-life [22]. Many studies consider accuracy, repeatability, 
and throughput time to be the main performance metrics for a 
grading and sorting system in comparison to conventional 
methods within agri-food industries. Many studies consider 
accuracy, repeatability, and throughput time to be the main 
performance metrics for a grading and sorting system in 
comparison to conventional methods within agri-food 
industries [23]-[24]. .  

Despite the trends in postharvest handling, there are still 
minimal studies that cover grading and sorting for iceberg 
lettuce. Subjectivity of quality of iceberg lettuce within local 
markets makes ambiguous classification during manual 
sorting in local farms. Standards have provided a framework 
for uniform compliance with domestic market requirements 
but are not applied and integrated within the local agricultural 
sector [25]. This perpetuates reliance on manual sorting 
practices that are not in line with metrics mentioned in 
standards [26]. Addressing this gap requires bridging 
qualitative standards with quantitative measurement tools to 
enhance grading accuracy, reduce waste, and improve market 
competitiveness.  

The main objective of the study is to develop an automated 
lettuce grading and sorting system for iceberg lettuce that 
samples five lettuces per batch on a conveyor belt. The basis 
for sorting is a three-level grading criteria based on 
chlorophyll-a [27]-[28],  moisture content [29]-[30] and fresh 
head weight [31]-[32] with lettuces extracted within two 
weeks of harvesting.  

This study undertakes the development of a specialized 
lettuce grading system tailored to the Philippine context based 
on the Philippine National Standard for iceberg lettuce 
(PNS/BAFPS 19:2005) [33]. It seeks to enhance economic 
sustainability within the lettuce farming sector by equipping 
local iceberg lettuce farmers with a grading system and 
postharvest processing line aimed to increase the supply of 
high-quality produce in consumer markets, particularly 
benefiting underserved populations. Improved post-harvest 
handling practices help maintain fresh produce's nutritional 
and sensory qualities, ensuring higher-quality food for 
consumers. Furthermore, the focus on locally sourced produce 
promotes sustainable agricultural practices, contributing to a 
more resilient and health-oriented food ecosystem. 



II. METHODOLOGY 

The design and construction of the mini-production line 
needed for the study includes a conveyor belt system, 
imaging system, control system, and sorting system. This 
mini-production line is then constructed to test the classifying 
and grading of iceberg lettuce in terms of its test throughput 
time and the precision of the sorters, as provided on Figure 1. 

 
Fig. 1. Simplified block diagram for mini-production line  

A. Genetic Programming-Fuzzy Logic Models 

The system integrates Genetic Programming (GP) for 

parameter estimation with a Mamdani-Type 1 Fuzzy Logic 

(FL) inference system for final quality classification. GP 

models were trained to predict three quantitative quality 

parameters as mentioned to be chlorophyll-a levels, moisture 

content, and fresh head weight, using RGB-HSV values as 

inputs. These predicted parameters were then passed into the 

fuzzy inference system, which classified the lettuce samples 

into three linguistic grades (L1 – high quality, L2 – medium 

quality, L3 – low quality) with an overall accuracy grading of 

90% with a maximum computational complexity of 496 

nodes for the GP models upon training. The code 

implementation can be checked in the provided git repository: 

https://github.com/ferds003/Automated-Lettuce-Grading-

and-Sorting-in-Postharvest-Manufacturing-Setup.git.  

B. Implementation Procedures 

1) Conveyor and Sorter Arm Design Considerations and 

Specifications 
Two conveyor belts of identical specifications were 

designed for the mini production line, as these aligned with 
the objectives of the imaging and sorting requirements, as 
shown in Figure 2. Both conveyors were powered by a 60W 
adjustable speed motor, which allowed precise control over 
belt movement to accommodate different processing speeds. 
For the handling of the lettuce, the consideration for selecting 
the specifications for the conveyor belt was that the PVC belt 
had a width of 20 cm and a thickness of 0.2 cm. It also had a 
length of 150 cm and a height of 75 cm, which ensured the 
handling of lettuce was non-invasive. The frame of the 
conveyor belt was constructed from stainless steel, a material 
selected for its suitability in food-grade applications. 

 
Fig. 2. Visual representation of dimensional requirements for the current 
setup of the study covering approximately 3 meters in total length. 

The imaging chamber was designed in such a way that it 
provides a controlled environment for accurate image 
capturing of the iceberg lettuce batches of five (5), as these 
are transported throughout the image-capture station. For 

high-quality image acquisition for further processing, the 
design considerations centered on background uniformity 
and seamless integration with the conveyor system. Shown in 
Figure 3 is an isometric CAD drawing of the chamber with 
dimensions provided in mm. It includes the measurements for 
the slotted steel angled bars, the dimensions required for the 
camera placements, and a background wall cover allowing a 
controlled image-taking environment. This setup allows the 
system to take images of the lettuce in batches of five, 
allowing for higher throughput of sorted lettuces. 

 
Fig. 3. Isometric CAD Drawing of imaging chamber detailing dimension 

constraints and placement of 1080p cameras. 

A lever arm was designed that would be actuated by the 
servo motor to guide and sort iceberg lettuce onto its 
designated sorting bins. The length of the lever arm was 
based on the width of the conveyor belt. Guide rails were also 
designed, which would be used to prevent lettuce from falling 
off the conveyor belt or prevent it from hitting the servo 
motors during the sorting process, as seen in Figure 4.  

 

 

Fig. 4. Isometric view of 3D-printed sorter arm and clamp that is equipped 

on the MG966R servo motor placed on sorting conveyor-side. 

Guide rails were positioned at the start and end of the 
conveyor, as well as in between designated sorting slots. The 
lengths of the guide rail varied depending on its placement on 
the conveyor.  

The sorting conveyor consists of the conveyor itself, 
guide rails, servo motors, servo motor mounts, and servo 
lever arms. CAD modelling software was used to design the 
layout of the sorting conveyor’s components. All of these 

https://github.com/ferds003/Automated-Lettuce-Grading-and-Sorting-in-Postharvest-Manufacturing-Setup.git
https://github.com/ferds003/Automated-Lettuce-Grading-and-Sorting-in-Postharvest-Manufacturing-Setup.git


components can be seen in Figure 5 below with units in 
millimeters (mm) along with the dimension constraints. As 
the lettuce moves from grading to sorting, the actual 
configuration took into account an additional 100 mm of 
clearance at the beginning of the sorting conveyor for the 
space between the two conveyor belts. 

 

Fig. 5. Isometric CAD drawing of sorting conveyor detailing dimension 

and angle constraints of servo motors. 

2) System Design 
Figure 6 shows the process flow of the system, which 

includes the input of a lettuce to the system composed of an 
imaging chamber and a sorting chamber, which were 
captured using multiple cameras and graded accordingly 
using a genetic programming and fuzzy logic model. 
Afterwards, the system sorts the lettuce based on the output 
grade, separating them into different sorting bins. 

 

 
Fig. 6. System process chart 

a) Lettuce 

The specific variant of lettuce used is the iceberg lettuce 
(Lactuca sativa var. capitata). These lettuces were freshly 
harvested up to two weeks before the use in the grading and 
sorting setup. Of these lettuces, there were three with 
different grading qualities chosen as the ground truth for the 
setup based on their extracted chlorophyll-a, moisture 
content, and fresh head weight. Figure 7 shows the three 
lettuces chosen as the ground truth. 

 

 

                                                        
Fig. 7. Ground truth samples of iceberg lettuces procured of (a.) high-
quality “L1”, (b.) medium-quality “L2”, (c.) low-quality “L3” respectievely 

for GP-FL modelling. 

b) Image Capturing 

Figure 8 shows the image capturing using five (5) 1080p 

HD Logitech C920 cameras in a single-file line parallel to the 

conveyor, located in the imaging chamber. 

The chamber also included LED lights that output an 
average of 400 lux across the areas in front of each camera. 

This ensured that the lettuces are gradable and sortable up to 
5 lettuces per batch. 

 

Fig. 8. Camera setup in front of imaging conveyor showcasing placement 

of iceberg lettuces upon first detection of ultrasonic sensor before sorting. 

c) Grading 

The grading of the lettuces required the use of a combined 

genetic programming and fuzzy logic (GP-FL) model. The 

inputs of the GP were the RGB and HSV color features 

extracted during the image processing. This gave the lettuce’s 

moisture content, chlorophyll-a, and fresh head weight which 

the combination of it will be forwarded to FL for grading 

based on L1, L2 and L3 grades.  

 

d) Sorting 

The lettuces were then sorted based on the output grading 

level, with three sorting bins present for each grade levels: 

“L1” for high-quality, “L2” for medium-quality, and “L3” for 

low-quality lettuces. The lettuces were sorted using 3D-

printed lever arms attached to a servo motor on the 

conveyors. Sorting also happens as a staggered release. 

 

3) Evaluation Metrics 
The use of time study as a method for measuring the 

amount of time required by the system to complete the task is 
a helpful way of analyzing a system’s efficiency. By taking 
the cycle, theoretical, and throughput times of the system, it 
became possible to optimize the efficiency of its operations. 
Equation 1 shows the formula for calculating the average 
cycle time calculated by the summation of the time it takes to 
perform each element of a task or process over several 
observed cycles, then dividing that total by the number of 
cycles observed 

 

Average cycle time = ∑
Times to perform each element

Number of cycles observed
        (1) 

 

Normal time is shown in Equation 2, which uses a rating 
factor as a variable to account for the variance in the 
performance of the system.  

 

 𝑁𝑜𝑟𝑚𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑁𝑇)  =  𝐴𝐶𝑇  ⋅  𝑅𝑎𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟       (2) 

 

Equation 3 is the formula for calculating throughput time, 
used for finding the total time it takes for the system to finish 
all the processes, from inputting the lettuce to the sorting of 
it. 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑡𝑖𝑚𝑒  =  
𝑁𝑇

1 − 𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒𝑠
        (3) 

 

Precision is another important metric to consider for the 
system, as it indicates the effectiveness of the system in the 
consistent sorting of lettuces for a post-harvest setup. It uses 

(a.) (b.) (c.) 



the number of correctly sorted lettuces and divides it by the 
total number of lettuces sorted to find the precision 
percentage (%), as shown in Equation 4. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑜𝑟𝑡𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙 𝑠𝑜𝑟𝑡𝑖𝑛𝑔
×  100         (4) 

III. RESULTS AND DISCUSSION 

Figure 9 shows an overview of the fully developed 
prototype. As mentioned, the system consisted of an imaging 
chamber with five cameras placed, a sorting conveyor 
wherein servo motors were responsible for sorting, and 
baskets that acted as containers for the sorted lettuces. 
Located on the left side was the control box responsible for 
connecting every electronic and electrical part together, with 
the Arduino, circuit breaker, power supply, and other 
electronic components inside the box.  

 
Fig. 9. Developed prototype setup featuring mainly the imaging and sorting 

conveyors equipped with GP-FL grading constructed custom sorting arms. 

 The throughput time, as shown in Table 1, reveals an 
inverse relationship between theoretical time and conveyor 
speed. As conveyor speed increases, the time it takes for 
lettuce to travel from Camera 5 to the corresponding sorters 
decreases. This enables higher output per cycle, improving 
overall system efficiency. The data also suggests that higher 
speeds result in faster actuation of the lever arms, since the 
lettuce reaches the sorting points more quickly. 

TABLE I.  THROUGHPUT TIME PER STATION WITHIN SETUP 

Station Distance 

(cm) 

Distance 

(m) 

Speed 

% 

Speed 

(m/min) 

Time 

(Sec) 

2nd 

Actuation 

Point 

(Sec) 

Conveyor 

1 

40 0.4 10% 5.33 4.5 - 

Camera 5 
to Sorter 

1 

82.5 0.825 10% 5.33 9.29 - 

  20% 10.66 6.19 6.62 

  30% 15.99 4.64 4.97 

  40% 21.32 3.71 3.97 

  50% 26.65 3.1 3.31 

  100% 53.3 1.69 1.81 

Camera 5 
to Sorter 

2 

115.5 1.155 10% 5.33 13 - 

  20% 10.66 8.67 9.27 

  30% 15.99 6.5 6.96 

  40% 21.32 5.2 5.56 

  50% 26.65 4.33 4.64 

  100% 53.3 2.36 2.53 

144 1.44 10% 5.33 16.21 - 

  20% 10.66 10.81 11.56 

Camera 5 

to Sorter 
3 

  30% 15.99 8.11 8.67 

  40% 21.32 6.48 6.94 

  50% 26.65 5.4 5.78 

  100% 53.3 2.95 3.15 

 

Evinced also in Table 1 is how excessively high speeds 
can negatively affect the system—causing lettuce to strike the 
lever arms more forcefully, which may reduce product quality 
and lead to inaccurate or imprecise sorting. 

Table 2 shows the precision of the sorting setup with 70% 
conveyor speed, from which five different lettuce samples of 
five trials were done. The GP-FL model’s grade was 
compared with the sorter that the lettuces were sorted in, 
which overall led to a precision of 100%, indicating that, over 
all the runs done by the setup, the sorter was precise and 
consistent in its sorting to the correct quality.  

TABLE II.  PRECISION TEST USING 70% CONVEYOR SPEED 

# 

No. 

Trial #1 Trial #2 Trial #3 Trial #4 Trial #5 

 GP-FL 

Grade 

Sorted 

in 

GP-FL 

Grade 

Sorted 

in 

GP-FL 

Grade 

Sorted 

in 

GP-FL 

Grade 

Sorted 

in 

GP-FL 

Grade 

Sorted in 

1 L1 L1 L1 L1 L3 L3 L2 L2 L3 L3 

2 L2 L2 L2 L2 L3 L3 L1 L1 L3 L3 

3 L3 L3 L1 L1 L1 L1 L3 L3 L2 L2 

4 L1 L1 L3 L3 L1 L1 L2 L2 L2 L2 

5 L2 L2 L3 L3 L2 L2 L1 L1 L3 L3 

 Precision 100% 

 

 Table 3, meanwhile, is the precision test when the 
conveyor speed is increased to 100%. Unlike the 70% 
conveyor speed, the table shows that there are inaccuracies 
when sorting while the conveyor is at full speed, such as in 
sample number 2 on trial 1, wherein the model predicted a 
grade of low quality, but was sorted to the medium quality bin. 
This indicates a less consistent setup due to performance 
issues, so operating at a lower conveyor speed is adequate for 
a consistent sorting system. 

TABLE III.  PRECISION TEST USING 100% CONVEYOR SPEED 

# 

No. 

Trial #1 Trial #2 Trial #3 Trial #4 Trial #5 

 GP-FL 

Grade 

Sorted 

in 

GP-FL 

Grade 

Sorted 

in 

GP-FL 

Grade 

Sorted 

in 

GP-FL 

Grade 

Sorted 

in 

GP-FL 

Grade 

Sorted 

in 

1 L2 L2 L1 L1 L2 L2 L3 L3 L1 L1 

2 L3 L2 L2 L1 L3 L3 L1 L1 L2 L2 

3 L1 L1 L1 L1 L2 L2 L2 L2 L3 L3 

4 L2 L2 L2 L2 L3 L3 L1 L1 L3 L3 

5 L1 L1 L3 L3 L2 L2 L1 L1 L2 L2 

        Precision 92% 

IV. CONCLUSION 

The setup with a total length of 3 meters is very suitable 
for small-scale farm operations with limited space often 
mentioned by local lettuce producers hindering automation in 
postharvest handling. With that intention, the study was able 
to develop a grading and sorting system for postharvest 
iceberg lettuce capable of handling 5 head per batch for 
inferencing for sorting based on three-level grade criteria 
with an evaluation on its throughput time and repeatability.  
This paper was able to demonstrate that the developed sorting 
conveyor system achieved 100% precision at 70% speed, and 



92% repeatability at 100% speed, based on five trials for each 
speed setting.  

 
A limitation of the study is the lack of sample size from 

the GP-FL modelling down to the repeatability trials. We 
urge future works to consider at least a sample size of 30 for 
all analysis. Future studies should also consider comparative 
analysis from traditional vs. the current setup to determine its 
sustainable domain advantages. 
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